作者单位
摘要
1 1.贵州梅岭电源有限公司 特种化学电源全国重点实验室, 遵义563003
2 2.南昌工学院 机械与车辆工程学院, 南昌 330108
氧还原反应(ORR)是燃料电池阴极重要的电化学反应过程, 其自发反应进程缓慢, 对氧还原反应起高效催化作用的催化剂面临价格昂贵、合成流程复杂、污染环境等问题, 因此探索合成简单、环境友好的氧还原催化剂制备方法具有重要意义。铁氮共掺杂介孔碳材料(Fe-N/MC)是一种有巨大应用价值的非贵金属氧还原反应催化剂。本工作通过在马弗炉中的半封闭体系内高温碳化小分子前驱体得到介孔碳材料(MCM), 再把获得的MCM与铁盐混合在管式炉中高温处理制备得到铁氮共掺杂介孔碳材料(Fe-N/MCMT)。该方法热解条件简单, 无需模板剂和NH3、HF等有毒物质。由于MCM含有较高的氮和氧元素, 有利于提升介孔碳材料表面的亲水性和配位能力, 通过MCM和铁盐制备出的Fe-N/MCMT含有丰富的、催化ORR的Fe-Nx活性位点, 其起始电位和半波电位分别为0.941和0.831 V (vs RHE), 比商业化Pt/C催化剂的起始电位和半波电位分别正34和16 mV。氧还原反应按照反应过程分为二电子过程和四电子过程, Fe-N/MCMT和Pt/C的转移电子数分别为3.77和3.91, 表明具有四电子反应过程。
铁氮共掺杂介孔碳 氧还原反应 半封闭体系 催化剂 iron-nitrogen co-doped mesoporous carbon oxygen reduction reaction semi-containment system catalyst 
无机材料学报
2023, 38(11): 1309
Author Affiliations
Abstract
1 Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
3 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau, China
4 School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
5 State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
6 Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
High-performance infrared (IR) photodetectors made by low dimensional materials promise a wide range of applications in communication, security and biomedicine. Moreover, light-harvesting effects based on novel plasmonic materials and their combinations with two-dimensional (2D) materials have raised tremendous interest in recent years, as they may potentially help the device complement or surpass currently commercialized IR photodetectors. Graphene is a particularly attractive plasmonic material because graphene plasmons are electrically tunable with a high degree of electromagnetic confinement in the mid-infrared (mid-IR) to terahertz regime and the field concentration can be further enhanced by forming nanostructures. Here, we report an efficient mid-IR room-temperature photodetector enhanced by plasmonic effect in graphene nanoresonators (GNRs)/graphene heterostructure. The plasmon polaritons in GNRs are size-dependent with strong field localization. Considering that the size and density of GNRs are controllable by chemical vapor deposition method, our work opens a cost-effective and scalable pathway to fabricate efficient IR optoelectronic devices with wavelength tunability.
Journal of Semiconductors
2020, 41(7): 072907
作者单位
摘要
1 Department of Materials Science and Engineering and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
2 Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
3 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau, China
4 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
5 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
plasmonic semiconductors fiber laser modelocking ultrafast generation 
Frontiers of Optoelectronics
2020, 13(2): 139
Author Affiliations
Abstract
1 Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
2 Department of Materials Science and Engineering, Monash University, Clayton 3800, Australia
Black phosphorus (BP) is a promising material for ultrafast and broadband photodetection because of its narrow bandgap from 0.35 eV (bulk) to 1.8 eV (monolayer) and high carrier mobility. Although photodetectors based on BP with different configurations have been reported, high photosensitivity was mostly observed in the visible range. A highly efficient BP-based infrared photodetector operated in the telecom spectral range, especially at 1550 nm, has not been demonstrated. Here, we report a Schottky-type photodetector based on thin BP flakes, operating in a broad spectral range from visible (635 nm) to infrared (1550 nm). A responsivity as high as 230 A·W 1 was achieved at 1550 nm with a source-drain bias of 1 V. The rise time is 4.8 ms, and the fall time is 6.8 ms. Under light illumination and external bias, the Schottky barrier between the BP and metal was reduced, leading to efficient photocurrent extraction. The unprecedented performance of the BP photodetector indicates intriguing potential for sensing, imaging, and optical communication.
040.5160 Photodetectors 160.1890 Detector materials 
Chinese Optics Letters
2018, 16(2): 020002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!